Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtre
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.05.26.542489

Résumé

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.

2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.01.02.23284109

Résumé

SARS-CoV-2 variants of concern (VOCs) arise against the backdrop of increasingly heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron genomes, we identified >6,000 independent introductions of the antigenically distinct virus into England and reconstructed the dispersal history of resulting local transmission. Travel restrictions on southern Africa did not reduce BA.1 importation intensity as secondary hubs became major exporters. We explored potential drivers of BA.1 spread across England and discovered an early period during which viral lineage movements mainly occurred between larger cities, followed by a multi-focal spatial expansion shaped by shorter distance mobility patterns. We also found evidence that disease incidence impacted human commuting behaviours around major travel hubs. Our results offer a detailed characterisation of processes that drive the invasion of an emerging VOC across multiple spatial scales and provide unique insights on the interplay between disease spread and human mobility.

3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.31.22275802

Résumé

The emergence of the SARS-CoV-2 Delta variant of concern (lineage B.1.617.2) in late 2020 resulted in a new wave of infections in many countries across the world, where it often became the dominant lineage in a relatively short amount of time. We here report on a novel genomic surveillance effort in Rwanda in the time period from June to September 2021, leading to 201 SARS-CoV-2 genomes being generated, the majority of which were identified as the Delta variant of concern. We show that in Rwanda, the Delta variant almost completely replaced the previously dominant A.23.1 and B.1.351 (Beta) lineages in a matter of weeks, and led to a tripling of the total number of COVID-19 infections and COVID-19-related fatalities over the course of only three months. We estimate that Delta in Rwanda had an average growth rate advantage of 0.034 (95% CI 0.025-0.045) per day over A.23.1, and of 0.022 (95% CI 0.012-0.032) over B.1.351. Phylogenetic analysis reveals the presence of at least seven local Delta transmission clusters, with two of these clusters occurring close to the border with the Democratic Republic of the Congo, and another cluster close to the border with Tanzania. A smaller Delta cluster of infections also appeared close to the border with Uganda, illustrating the importance of monitoring cross-border traffic to limit the spread between Rwanda and its neighboring countries. We discuss our findings against a background of increased vaccination efforts in Rwanda, and also discuss a number of breakthrough infections identified during our study. Concluding, our study has added an important collection of data to the available genomes for the Eastern Africa region, with the number of Delta infections close to the border with neighboring countries highlighting the need to further strengthen genomic surveillance in the region to obtain a better understanding of the impact of border crossings on lowering the epidemic curve in Rwanda.


Sujets)
Hépatite D , Douleur paroxystique , COVID-19
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.01.22274406

Résumé

South Africa's fourth COVID-19 wave was driven predominantly by three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern. We have now identified two new lineages, BA.4 and BA.5. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del, L452R, F486V and the wild type amino acid at Q493. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure with the TaqPath COVID-19 qPCR assay. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa from the first week of April 2022 onwards. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.07 - 0.09) and 0.12 (95% CI: 0.09 - 0.15) per day respectively over BA.2 in South Africa.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267606

Résumé

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter- regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta's invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.


Sujets)
COVID-19
6.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1159614.v1

Résumé

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta’s invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.18.21258689

Résumé

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern, but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of two months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.

8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.08.21251393

Résumé

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in March 2020 in Uganda. Recently the epidemic showed a shift of SARS-CoV-2 variant distribution and we report here newly emerging A sub-lineages, A.23 and A.23.1, encoding replacements in the spike protein, nsp6, ORF8 and ORF9, with A.23.1 the major virus lineage now observed in Kampala. Although the clinical impact of the A.23.1 variant is not yet clear it is essential to continue careful monitoring of this variant, as well as rapid assessment of the consequences of the spike protein changes for vaccine efficacy.


Sujets)
Syndrome respiratoire aigu sévère
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.08.20248677

Résumé

The second SARS virus, SARS-CoV-2, emerged in December 2019, and within a month was globally distributed. It was first introduced into Scotland in February 2020 associated with returning travellers and visitors. By March it was circulating in communities across the UK, and to control COVID-19 cases, and prevent overwhelming of the National Health Service (NHS), a 'lockdown' was introduced on 23rd March 2020 with a restriction of people's movements. To augment the public health efforts a large-scale genome epidemiology effort (as part of the COVID-19 Genomics UK (COG-UK) consortium) resulted in the sequencing of over 5000 SARS-CoV-2 genomes by 18th August 2020 from Scottish cases, about a quarter of the estimated number of cases at that time. Here we quantify the geographical origins of the first wave introductions into Scotland from abroad and other UK regions, the spread of these SARS-CoV-2 lineages to different regions within Scotland (defined at the level of NHS Health Board) and the effect of lockdown on virus 'success'. We estimate that approximately 300 introductions seeded lineages in Scotland, with around 25% of these lineages composed of more than five viruses, but by June circulating lineages were reduced to low levels, in line with low numbers of recorded positive cases. Lockdown was, thus, associated with a dramatic reduction in infection numbers and the extinguishing of most virus lineages. Unfortunately since the summer cases have been rising in Scotland in a second wave, with >1000 people testing positive on a daily basis, and hospitalisation of COVID-19 cases on the rise again. Examining the available Scottish genome data from the second wave, and comparing it to the first wave, we find that while some UK lineages have persisted through the summer, the majority of lineages responsible for the second wave are new introductions from outside of Scotland and many from outside of the UK. This indicates that, while lockdown in Scotland is directly linked with the first wave case numbers being brought under control, travel-associated imports (mostly from Europe or other parts of the UK) following the easing of lockdown are responsible for seeding the current epidemic population. This demonstrates that the impact of stringent public health measures can be compromised if following this, movements from regions of high to low prevalence are not minimised.


Sujets)
COVID-19 , Insuffisance rénale
10.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.19.427373

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Sujets)
Maladies pulmonaires , Pneumopathie infectieuse , Syndrome respiratoire aigu sévère , Perte de poids , Mort , Insuffisance respiratoire
11.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.30.20249034

Résumé

The SARS-CoV-2 lineage B.1.1.7, now designated Variant of Concern 202012/01 (VOC) by Public Health England, originated in the UK in late Summer to early Autumn 2020. We examine epidemiological evidence for this VOC having a transmission advantage from several perspectives. First, whole genome sequence data collected from community-based diagnostic testing provides an indication of changing prevalence of different genetic variants through time. Phylodynamic modelling additionally indicates that genetic diversity of this lineage has changed in a manner consistent with exponential growth. Second, we find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Third, we examine growth trends in SGTF and non-SGTF case numbers at local area level across England, and show that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. Available SGTF data indicate a shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Fourth, we assess the association of VOC frequency with independent estimates of the overall SARS-CoV-2 reproduction number through time. Finally, we fit a semi-mechanistic model directly to local VOC and non-VOC case incidence to estimate the reproduction numbers over time for each. There is a consensus among all analyses that the VOC has a substantial transmission advantage, with the estimated difference in reproduction numbers between VOC and non-VOC ranging between 0.4 and 0.7, and the ratio of reproduction numbers varying between 1.4 and 1.8. We note that these estimates of transmission advantage apply to a period where high levels of social distancing were in place in England; extrapolation to other transmission contexts therefore requires caution.

12.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.10.23.20218446

Résumé

The UK's COVID-19 epidemic during early 2020 was one of world's largest and unusually well represented by virus genomic sampling. Here we reveal the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 SARS-CoV-2 genomes, including 26,181 from the UK sampled throughout the country's first wave of infection. Using large-scale phylogenetic analyses, combined with epidemiological and travel data, we quantify the size, spatio-temporal origins and persistence of genetically-distinct UK transmission lineages. Rapid fluctuations in virus importation rates resulted in >1000 lineages; those introduced prior to national lockdown were larger and more dispersed. Lineage importation and regional lineage diversity declined after lockdown, whilst lineage elimination was size-dependent. We discuss the implications of our genetic perspective on transmission dynamics for COVID-19 epidemiology and control.


Sujets)
COVID-19
13.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20166082

Résumé

Global dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Sujets)
COVID-19
14.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.06.08.20124834

Résumé

SARS-CoV-2, the causative agent of COVID-19, emerged in Wuhan, China in December 2019 and spread rapidly throughout the world. Understanding the introductions of this new coronavirus in different settings may assist control efforts and the establishment of frameworks to support rapid response in future infectious disease outbreaks. We investigated the first four weeks of emergence of the SARS-CoV-2 virus in Scotland after the first case reported on the 1st March 2020. We obtained full genome sequences from 452 individuals with a laboratory-confirmed diagnosis of COVID-19, representing 20% of all cases until 1st April 2020 (n=2310). This permitted a genomic epidemiology approach to study the introductions and spread of the SARS-2 virus in Scotland. From combined phylogenetic and epidemiological analysis, we estimated at least 113 introductions of SARS-CoV-2 into Scotland during this period. Clusters containing multiple sequences suggestive of onward transmission occurred in 48/86 (56%). 42/86 (51%) clusters had no known international travel history indicating undetected introductions. The majority of viral sequences were most closely related to those circulating in other European countries, including Italy, Austria and Spain. Travel-associated introductions of SARS-CoV-2 into Scotland predated travel restrictions in the UK and other European countries. The first local transmission occurred three days after the first case. A shift from travel-associated to sustained community transmission was apparent after only 11 days. Undetected introductions occurred prior to the first known case of COVID-19. Earlier travel restrictions and quarantine measures might have resulted in fewer introductions into Scotland, thereby reducing the number of cases and the subsequent burden on health services. The high number of introductions and transmission rates were likely to have impacted on national contact tracing efforts. Our results also demonstrate that local real-time genomic epidemiology can be used to monitor transmission clusters and facilitate control efforts to restrict the spread of COVID-19. FundingMRC (MC UU 1201412), UKRI/Wellcome (COG-UK), Wellcome Trust Collaborator Award (206298/Z/17/Z - ARTIC Network; TCW Wellcome Trust Award 204802/Z/16/Z Research in contextO_ST_ABSEvidence before this studyC_ST_ABSCoronavirus disease-2019 (COVID-19) was first diagnosed in Scotland on the 1st of March 2020 following the emergence of the causative severe acute respiratory system coronavirus 2 (SARS-CoV-2) virus in China in December 2019. During the first month of the outbreak in Scotland, 2310 positive cases of COVID-19 were detected, associated with 1832 hospital admissions, 207 intensive care admissions and 126 deaths. The number of introductions into Scotland and the source of those introductions was not known prior to this study. Added value of this studyUsing a combined phylogenetic and epidemiological approach following real-time next generation sequencing of 452 SARS-CoV-2 samples, it was estimated that the virus was introduced to Scotland on at least 113 occasions, mostly from other European countries, including Italy, Austria and Spain. Localised outbreaks occurred in the community across multiple Scottish health boards, within healthcare facilities and an international conference and community transmission was established rapidly, before local and international lockdown measures were introduced.


Sujets)
COVID-19
15.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.26.20079418

Résumé

Background: Ten days after the first reported case of SARS-CoV-2 infection in the Netherlands, 3.9% of healthcare workers (HCWs) in nine hospitals located in the South of the Netherlands tested positive for SARS-CoV-2 RNA. The extent of nosocomial transmission that contributed to the HCW infections was unknown. Methods: We combined epidemiological data, collected by means of structured interviews of HCWs, with whole genome sequencing (WGS) of SARS-CoV-2 in clinical samples from HCWs and patients in three of nine hospitals that participated in the HCW screening, to perform an in-depth analysis of sources and modes of transmission of SARS -CoV-2 in HCWs and patients. Results: A total of 1,796 out of 12,022 HCWs (15%) of the three participating hospitals were screened, based on clinical symptoms, of whom 96 (5%) tested positive for SARS-CoV-2. We obtained complete genome sequences of 50 HCWs and 18 patients. Most sequences grouped in 3 clusters, with 2 clusters displaying local circulation within the region. The observed patterns are most consistent with multiple introductions into the hospitals through community acquired infections, and local amplification in the community. Conclusions: Although direct transmission in the hospitals cannot be ruled out, the data does not support widespread nosocomial transmission as source of infection in patients or healthcare workers.


Sujets)
COVID-19 , Infections
SÉLECTION CITATIONS
Détails de la recherche